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INTRODUCTION:

EXPERIMENTAL QUALITY
What is research? In his book on 

experimental design,1 David Glass of the 
Novartis Institutes for Biomedical Research 

in Cambridge, Massachusetts, puts it this way:  
Scientific research is the process of determining 

some property Y about some thing X, to a 
degree of accuracy sufficient for another 

person to confirm this property Y. 
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In other words: If it needs to be accurate enough for someone else 
to confirm it, it needs to be reproducible. Therefore, what distinguishes 
research from playful observation is reproducibility.
	 But reproducibility seems to be in a crisis. The oncology research 
team at Amgen failed to reproduce 47 of 53 published preclinical cancer 
studies;2 none of the effects of more than 100 compounds initially reported 
to lengthen life span in a mouse model of Amyotrophic Lateral Sclerosis 
(ALS) could be reproduced, and none were successful in human trials,3 
and the number of retracted studies has been increasing.4 
	 While most were retracted because of misconduct, 21% of the 
retractions are related to sloppy science—contamination of reagents, 
mistakes in statistical analyses, or the authors’ inability to reproduce their 
own data, according to a 2014 study.5 “A lot of the science is very poorly 
done,” says Arturo Casadevall from the Johns Hopkins Bloomberg School 
of Public Health in Baltimore, one of the study’s authors.  
	 And these retractions are likely only the tip of the iceberg, he says. 
Case in point: Only 1.4% are due to contaminated cell lines, even though 
studies have shown that about 15% of cell lines are contaminated with other 
cells, and 10-15% of cell cultures are contaminated with mycoplasma, a tiny 
bacterium. Therefore, Casadevall says, the true number of papers that use 
unreliable cell lines is likely far higher than those 1.4%.
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	 This suggests that erroneous studies are often not retracted. One 
reason is that researchers who can’t reproduce someone else’s data have 
almost no place to publish their negative findings, because most journals 
have little interest in publishing them. The University of Washington’s 
Ferric Fang, who coauthored Casadevall’s 2014 retraction study,5 says if a 
study finds that some drug has some effect, and 19 groups later find the 
opposite, much of that will never be published or it might be published in 
less prominent journals. It will appear, therefore, that the initial finding 
has never been challenged. “One of my postdocs cynically remarked to 
me, ‘it’s better to be first than to be right,’” he says.  
	 The pressure to be the first to publish an interesting positive 
finding in a prestigious journal, coupled with the need to come up with 
a hypothesis to write research grants, can lead to confirmation bias, Fang 
says: There are labs, he says, where the principal investigator tells the 
staff, “‘this is the result you are supposed to get.’ It’s not [about] the truth 
anymore, but rather [about] generating lots of data that seem to support 
the pet idea of the principal investigator.”  
	 Meanwhile, biological experiments are becoming ever more 
complex. One high throughput experiment can involve processing 
thousands or millions of data points. This means that experimental design 
and statistical knowledge are more important than ever, while training in 
these areas is often inadequate.



EXPERIMENTAL QUALITY  5

	 This handbook tries to address some of these gaps. It will discuss 
the major traps researchers can fall into and how to avoid them. These 
include confirmation bias; unreliable reagents; small sample sizes; lack of 
blinding and randomization; the importance of standards; multiple testing 
and false positives; and recording and reporting experimental procedures 
and results. 
	 But first, let’s take a look at how we got here: Why do we do 
science the way we do it, and is this approach still adequate today?

References:

1	 David J. Glass: Experimental Design for Biologists, 2nd edition.  
	 Cold Spring Harbor Laboratory Press (2014)

2	 Nature 483, 531 (2012)

3 	 Nature 507, 423 (2014)

4 	 Proc. Natl. Acad. Sci. USA 109, 17028 (2012)

5 	 FASEB J. 28, 3847 (2014)

Further reading:

Begley CG, Buchan AM, Dirnagl U: Robust research: Institutions must do 
their part for reproducibility. Nature 525, 25 (2015)

Begley CG, Ioannidis JPA: Reproducibility in Science: Improving the 
standard for basic and preclinical research. Circ. Res. 116, 116 (2015)

“Experimental design and statistical 
knowledge are more important than 
ever, while training in these areas is 
often inadequate.”



THE PHILOSOPHICAL 
FRAMEWORK

According to the instructions on how 
to write a research grant application on 
the web site of the National Institute of 

Neurological Disorders and Stroke (NINDS), 
most reviewers “feel that a good grant 

application is driven by a strong hypothesis. 
The hypothesis is the foundation of your 

application. Make sure it’s solid. It must be 
important to the field, and you must have a 

means of testing it.”1
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This hypothesis-driven approach to experimental 
science has a long history. Initially, experiments were quite rare, says Edward 
Hall, a philosopher at Harvard University, who studies the philosophy of 
science. Instead, there were appeals to authority. “People would claim that 
something was true because Aristotle said so,” he says. They made unproven 
general statements, assumptions or premises about how the world works, 
and deduced from them more specific conclusions. Because this approach 
derives its conclusions from these initial assumptions, it’s called deductive 
reasoning, Hall says.  
	 But Francis Bacon (1561-1626) warned that preexisting beliefs 
can bias the conclusions. In a way, he was the first who warned about 
confirmation bias. To prevent such bias, Bacon suggested we need to start 
with a clean slate free from any assumptions or beliefs. Instead, we should 
gather experimental evidence first and only then generalize principles from 
that, an approach called inductive reasoning. “He was shouting, ‘you need 
to do experiments, don’t just read your Aristotle,’” Hall says. By replacing 
preexisting ideology with experimental data as the basis of knowledge, Bacon 
launched a revolution in European science, Glass adds.2  
	 David Hume (1711-1776), however, was skeptical: We can never know 
for sure, he argued, that the conclusions from our experiments are true, 
because we can’t know for sure that things will keep behaving according to 
the same rules they have behaved by in the past.  
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	 However, while we can never be sure that something is true, we can 
know for sure that something is false, because just one observation that 
contradicts our assumption proves that assumption to be wrong. That’s why 
Karl Popper (1902-1994) proposed that scientists should focus on what can 
be proven false, because that’s the only thing they can be certain about. He 
suggested researchers should first come up with a hypothesis, which they 
should then try to falsify (not verify!) with their experiments.  
	 This is the hypothesis-falsification approach most funding agencies 
are using today. But not everyone believes that this is the best way to go 
about science. That’s because by abandoning Bacon’s experiments-first 
approach, Popper actually went back to a modified version of deductive 
reasoning: Instead of starting from scratch with experimental data, one first 
needs a hypothesis. Therefore, the confirmation bias Bacon had originally 
warned against becomes a concern again, Glass says: Researchers might 
prefer observations that are consistent with the hypothesis.
	 Glass explains the problem with an example2: Assume you want to 
find out the color of the sky. If you have to come up with a hypothesis, that 
hypothesis would likely be, “The sky is red.” Because you’d then only do 
experiments to falsify this hypothesis, they would likely be overly narrow: All 
you’d do is measure red versus non-red. Eventually, you’d probably do some 
of your measurements during dawn or dusk, when the sky is indeed red, 
and conclude that you cannot falsify the hypothesis that the sky is red and 
therefore assume that the color of the sky is likely red. 
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	 The example illustrates two problems the hypothesis-falsification 
approach might create for reproducibility and experimental quality. First, 
it might indeed create a confirmation bias that will cause a researcher to 
value the “red” data more than the—more common—“non-red” data. 
Because the scientist has to come up with the hypothesis first, s/he will 
at least subconsciously prefer experimental results that fail to falsify that 
hypothesis—that the sky is red. Why? Because there is a strong desire in each 
of us that we want our predictions to turn out to be correct. The role of the 
experiment, then, “is to manifest the scientist’s brilliance,” Glass argues.2 “The 
hypothesis is a dangerous framework, in this sense, if it is used only to feed 
the scientist’s hubris.” 
	 Second, the hypothesis-falsification approach can cause scientists to 
miss the most important data (in this case, that the sky is in fact blue and 
black most of the time, and not red). That’s because it only allows for two 
outcomes—falsification or no falsification—and as a result creates a data 
filter that’s likely too narrow compared with what’s really going on.
	 What’s more, for many systems biology projects, where biologists 

“screen” entire biological systems like genomes or proteomes, the hypothesis-
falsification approach doesn’t work, Glass says. Take the sequencing of the 
human genome: There is no reasonable hypothesis, Glass says, that could 
possibly be falsified by having the genome sequence in hand. For example, 
the hypothesis that there are 10 genes at least 50% homologous in sequence 
to the insulin gene, he says, is too narrow to justify sequencing the entire 
human genome to try to falsify it. Broader hypotheses like “understanding 
the genome would speed the search for cures to human disease” aren’t 
falsifiable either, he argues, because we can’t go back in time to see whether 
cures would have appeared as quickly without having the genome sequence.2

“The hypothesis is a dangerous framework...  
if it is used only to feed the scientist’s hubris.”

David Glass 
Novartis Institutes for Biomedical Research



10  BURROUGHS WELLCOME FUND

	 Because of these issues, some have started to call systems biology 
experiments “hypothesis generating.” To Glass, that’s just another way of 
saying that the hypothesis-falsification framework just doesn’t work for 
such experiments. 
	 Therefore, Glass argues, we need to come up with a new scientific 
framework that avoids these problems and shortcomings. He suggests 
starting with a question instead of a hypothesis. This, he says, not only sets 
the right frame for systems biology experiments (“What is the sequence of 
the human genome?”), but also avoids confirmation bias. That’s because 
a question puts equal weight on both possible answers, while a declarative 
sentence that states a hypothesis (“The sky is red”) puts the emphasis on 
answers that are consistent with the hypothesis.2 
	 Once we have experimental data that answer the initial question, 
Glass says, we can use them to formulate a model. Then the researcher 
can ask further questions to test the validity of the model and refine it if 
necessary. For example, Glass says, one could start with a question like, “does 
gene X resemble any proteins of known function?” To find out, we would 
obviously sequence the gene. If the sequence tells us that it resembles, say, 
ubiquitin ligases, we can ask another, more detailed question: “Does gene X 
function as a ubiquitin ligase?”2  
	 There’s another reason why coming up with a hypothesis can be a 
problem in biomedical sciences today: Researchers often use their intuition 
to come up with hypotheses that make sense to them, Hall says, but intuition 
can be misleading, especially as the systems they deal with are becoming 
more complex. Empirical science like biomedical research, he says, is at the 
same point mathematics was at in the mid-19th century: Until then, there 
were no clearly defined standards of what counted as an acceptable method 
of proof, which is why intuition would often play a role in considering a 
mathematical proof acceptable. 
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	 But by the 19th century, intuition started to conflict with the evidence. 
For example, the fact that one can have two infinities with different sizes is 
not at all intuitive. So mathematicians came up with standard formal logic 
to replace intuition. “What is so striking is that we have nothing remotely 
analogous to that in the case of empirical science,” Hall says. At the same 
time, many biomedical researchers are probably unaware that their intuition 
is far from reliable—another reason why asking questions might be better 
than coming up with a hypothesis.  
	 Now that we’ve discussed how today’s philosophical framework of 
science can affect reproducibility, let’s discuss the more practical aspects. 
We’ll start with the things you’ll need to do to prepare first to be ready for 
your experiments: Your reagents.
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CHECK YOUR REAGENTS
“Young Blood May Hold Key to Reversing Aging,” 

the New York Times headlined in May 2014,1 
after Amy Wagers of Harvard University 

and her colleagues reported new findings on 
GDF11, a protein they had previously found 

to decrease with age in the blood of mice: 
The protein seemed to be one of the factors 
responsible for age-reversal effects such as 
muscle regeneration when blood of young  

mice was infused into older mice.2
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A year later, however, Glass and colleagues reported the 
opposite: GDF11 levels didn’t decrease with age in the blood of mice, and 
the protein seemed to inhibit muscle regeneration.3 One reason for the 
discrepancy, they reported, was that the antibody used in Wagers’ original 
study didn’t just recognize GDF11, but also the closely related GDF8 (also 
known as myostatin). 
	 In a more recent paper, Wagers and her colleagues confirmed that 
the antibody recognizes both GDF8 and 11; however, they found that it 
also recognizes immunoglobulins, whose levels increase with age in the 
blood of mice.4 This, Wagers says, means that the GDF11 increase Glass 
and colleagues reported is in fact due to the increase in immunoglobulin 
levels and not GDF11. 
	 The case shows that researchers need to be aware that the reagents 
they use in their experiments might not be as reliable as they believe them 
to be. While antibody results are mostly reliable, Wagers says, it’s always 
possible an antibody recognizes some as unknown protein targets—unless 
you exclude that possibility by testing it “against every other protein and 
protein conformation in the entire biological universe.” Because that’s 
virtually impossible to do in practice, it’s important to complement results 
from antibody experiments with different approaches, says Wagers, who is 
currently developing a mass spectrometry-based assay and other assays to 
test her GDF11 observations. 
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	 Unreliable antibodies are just one of many problems; in their study 
last year, Casadevall and colleagues identified contaminated reagents as one 
of the most common reasons why papers were retracted due to scientific 
error.5 In other cases, researchers failed to check whether the mice they were 
using really only lacked the one gene they were studying, or didn’t test a 
script of computer code with known data before using it with the data they 
were studying.
	 The solution, Casadevall says, is obvious: Check and validate your 
reagents, cell lines, animals or computer code—before you start an 
experiment. One reason those things are often not done is a lack of 
communication in the lab, something Keith Micoli, a former postdoc who 
now directs the New York University School of Medicine Postdoctoral 
Program, learned the hard way: “Five people independently bought the 
same antibody from the same company to do the same test, and all found 
that it didn’t work,” he says. “This never came up at lab meeting, because 
[we didn’t] talk about experiments that don’t work. So our lab wasted 
thousands of dollars.”  
	 So to address problems as soon as they arise, make sure you hold 
regular lab meetings where people don’t just give polished Power Point 
presentations, but can discuss primary data—without being afraid to speak 
up about things that failed. And having a big lab isn’t an excuse not to do 
so, Micoli says, because senior people in the lab could hold the meetings 
instead of the principal investigator. 
	 Next, let’s take a more detailed look at some common reagent-
related problems, and solutions for preventing them. This list is by no 
means complete, but serves to illustrate the kind of measures you can take 
to prevent problems. 
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Unreliable Antibodies Are Actually Quite Common 
	 A 2009 analysis of the quality of 49 antibodies that were supposed 
to be specific for certain G protein coupled receptors found that most of 
them bound to more than one receptor,6 and a 2011 analysis found that 
about a quarter of 246 antibodies used in epigenetic studies bound to 
more than one target.7 
	 There are many possible reasons why antibodies are unreliable; in 
Micoli’s case, the problem started once the company making the antibody 
he’d been using sold the rights to another company. “It no longer worked 
nearly as well,” he says. “We spent months trying to figure out what had 
gone wrong.” Eventually, after talking to people in other labs, he found 
that all of the people who had problems had purchased the same antibody 
from the same company within a few months of one another.
	 Solutions: Make sure you check and validate the antibodies you are 
working with before doing the experiment, and test them with positive and 
negative controls. Also, look for validated antibodies when you buy them. 
For example, antibodies-online.com, the world’s largest antibody market 
place, is now adding a green seal of approval to antibodies that have been 
validated. The seals are the result of an effort by the company Science 
Exchange to validate thousands of antibodies on the site.8  

“Check and validate your reagents, cell  
lines, animals or computer code—before 
you start an experiment.”

Arturo Casadevall 
Johns Hopkins Bloomberg School of Public Health
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RNAi

	 Knockdown experiments with RNAi are notorious for off-target 
effects and variability in the level of the knockdown, says Harvard Medical 
School cell biologist Randall King. The authors of most RNAi screens, he 
says, don’t sufficiently validate their results, suggesting that many studies 
may contain false positive results.9 “I think it’s just an example of a 
technique that’s inherently not [as] robust” as some other approaches like 
genetic knockouts, he says.
	 Solution: Make sure you do an independent validation, King says, 
by reproducing a similar effect as the one you’re reporting with a 
completely different RNAi that’s designed to target the same gene in a 
different, independent way.
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Mycoplasma Contamination of Cell Lines 

	 An estimated 10-15% of cell cultures are thought to be infected with 
this tiny bacterium that’s too small to see under the light microscope and 
not sensitive to antibiotics that can be used with cultured cells because it 
lacks cell walls, says James Deatherage, chief of the cell biology branch at 
the National Institute of General Medical Sciences (NIGMS), referring to a 
recent study of over 9,000 RNA sequence data from cultured mammalian 
cells that found mycoplasma sequences in 11%.10

	 Solution: Check for mycoplasma sequences by polymerase chain 
reaction (PCR). If you find contamination, the only certain way to get rid 
of mycoplasmas is by throwing away the infected cells and starting over, 
Deatherage says. And make sure you report that you’ve done the mycoplasma 
check in your paper, he adds: In a recent analysis of 101 randomly selected 
NIH-funded papers, Zhongzhen Nie of NIGMS  found that none of them 
reported whether they checked their cells for mycoplasma. If you don’t 
report it, the reader has no way to know whether the test was done at all, 
Deatherage says.  

“An estimated 10–15% of cell cultures are 
thought to be infected with mycoplasma.”
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Cell Lines Contaminated With Other Cell Lines

	 This is also a widespread problem: A 1999 study showed 18% of 252 
tumor cell lines to be contaminated with different cell lines,11 and a 2003 
study found 14.9% of 550 leukemia cell lines contaminated.12 Often the 
contaminating cells are the famous HeLa cells, Micoli says, because they 
are especially aggressive in the way they grow. “One eventually grows out 
to dominate the other,” he says, “and now you are using a cell line that’s 
not what you think it is.”  
	 This type of contamination is especially problematic when studying 
processes that likely differ between cell types, like the regulation of induced 
cell death (apoptosis), Deatherage says: In painstakingly detailed experiments, 
he says, Peter Sorger at Harvard Medical School has shown that differences 
in the level of one or two proteins in the pathways that trigger apoptosis 
typically observed in different cell types can lead to opposite results.13 As 
a result, cancer drug candidates that work by inducing apoptosis might 
have different effects in a misidentified cell line, for example.
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Solutions: 
•	 Check if you are working with a cell line that has been reported by 

others as contaminated or misidentified. The International Cell 
Line Authentication Committee (ICLAC) maintains a list of such 
false cell lines on their web site.14 If there is an authentic stock of a 
cell line on the list, make sure you get it from a trusted vendor such 
as ATCC, Coriell or DSMZ, Deatherage says. This may cost a 
couple of hundred dollars, Casadevall says, “but if you work [for] a 
year on the wrong thing, you’re talking about [wasting] thousands 
and thousands of dollars.” Otherwise, don’t use false cell lines: If no 
authentic stock exists, Deatherage adds, you should not use it at all.  

•	 If you are working with a human cell line, you can (and should) 
check the identity of your cell lines, for example by PCR 
amplification of a set of short tandem repeat loci on the DNA.15 
Doing so is affordable now, Deatherage says: “You can buy a kit 
for $1000 and do a cell line for $25 to $40,” he says. “There is no 
excuse anymore for not authenticating your cells.” You can then 
compare the result with the profiles suppliers like ATCC have on 
their web sites.16 For non-human cell lines, however, such profile 
databases aren’t available yet, Deatherage says.  

•	 Make sure you report in your publication where you got your 
cell lines from and that you authenticated them. That will go a 
long way enabling others to trust your results and reproduce 
them. In an analysis of 101 randomly chosen NIH-funded 
papers, Zhongzhen Nie found that 43% either didn’t indicate 
where they got their cell lines or they got them from another lab 
instead of a trusted repository; none of the labs that got the cells 
from another lab reported that they authenticated them.
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High or unknown passage number of cell lines. 

	 The number of passages a cell line went through can make a difference 
as to how the cell line behaves biologically. “I’ve seen real differences,” 
Micoli says, between cells passaged less than 10 times compared with more 
than 15 times. The resulting changes can be quite dramatic. They include 
rearrangement or loss of chromosomes, Micoli says, all of which can lead 
to changes in gene or protein expression. In fact, Deatherage adds, studies 
have shown that an increase from 18 to 40 passages can affect mRNA 
expression, secretion, adhesion and proliferation. As a result, he says, “you 
wouldn’t be able to rely on high passage cells for any kind of physiological 
conclusions like drug responses.”  
	 Solution: Every time someone starts a series of experiments, get them a 
fresh cell line from a trusted vendor. Make sure you expand and freeze them 
after very few passages immediately after they arrive and then distribute 
aliquots, keeping a record of the number of passages the cells went through. 
And make sure you report the passage number in your publication.  

“Every time someone starts a series of 
experiments, get them a fresh cell line 
from a trusted vendor.”
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SET UP YOUR 
EXPERIMENTAL SYSTEM

Once you’ve validated your reagents, you 
need to set up the experimental system.
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First, there is sample size: Just how many animals or samples 
do you need per experimental group to get meaningful results? This isn’t so 
important when you do exploratory research just to see what’s there like an 
initial screen where there are no controls. But in any experiment where you 
compare a specific experimental group with a control to test a specific 
question, sample size is crucial.
		 Even so, sample sizes in published studies often seem to be 
inadequate: When Shai Silberberg at the NINDS checked 76 high impact 
preclinical animal studies that had been cited more than 500 times (compiled 
in ref.1), he found that half used five animals or less per experimental group, 
and five didn’t report the sample size at all. “You’ll hardly ever find anyone 
telling you how they estimated the sample size; it’s [often] just pulled out of 
a hat,” says Silberberg, who helped organize an NINDS workshop in June 
2012 that, among other things, called for appropriate sample size estimation 
in preclinical research2 and who has been involved in the development of 
training videos that discuss reproducibility issues.3
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		 Sample sizes this small can lead to misleading results, Silberberg 
says, referring to a 2008 study,4 where researchers with the non-profit ALS 
Therapy Development Institute (ALS TDI) in Cambridge, Massachusetts, 
compiled experimental data from more than 2,000 mice overexpressing a 
mutated human SOD1 gene (which simulates ALS) that had never been 
treated with any experimental drug. They randomly assigned animals from 
this database to two different groups and checked for differences in life 
expectancy between the groups—a readout for experiments that test ALS 
candidate drugs.  
		 Because none of the mice had been treated in any way, any statistically 
significant life expectancy differences between the two groups could only be 
due to chance. However, they found that groups of four animals had a 
statistically significant difference in life expectancy in 30% of cases, and 
even groups of ten animals still differed in 10% of cases.4 
		 “The numbers are startling,” Silberberg says: If ALS studies 
typically use 10 or fewer animals per experimental group, then at least one 
in 10 ALS candidate drug studies with the SOD1 mouse model probably 
discovered a life expectancy effect that is just the result of chance. Combine 
that with the fact that negative studies usually go unpublished, he adds, and 
“you can easily imagine that nine groups tried to do the experiment [and] 
didn’t see anything. And one group by chance got a significant difference, 
and that’s what makes its way into the literature.”  
		 It’s not too much of a surprise, then, that the track record of ALS 
candidate drugs identified in the SOD1 mouse model is far from good: 
When ALS TDI researchers tried to reproduce the results of the more than 
100 drug candidates previously reported to slow down ALS in the SOD1 
mouse model, none of them had an effect.5 One of them, minocycline, 
had initially been reported to have a big effect in mice,6;7 but in a phase III 
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randomized clinical trial with 412 patients that was funded by NINDS, 
patients who took the drug actually deteriorated faster.8;9 So “with what we 
know now,” Silberberg says, NINDS might have chosen to first reproduce 
the preclinical studies with larger groups of animals before funding a 
clinical trial.  
		 These examples should make it clear that it’s very important to 
determine what sample size you need to get meaningful results. To do so, 
you’ll first need to get a feel for how your measurements—the effect size—
compare with the variability around the negative controls. That’s essentially 
what the ALS TDI researchers determined when they checked the variability 
in their untreated SOD1 mice. Once you’ve done the same for the positive 
controls, you should be able to tell if there is enough of a range between the 
positive and negative controls to measure a meaningful effect.  
		 For high throughput screens, King says, you should run a series of 
positive and negative controls to then calculate the so-called z prime factor. 
That’s a number between 0 and 1, King says, that indicates the difference 
between positive and negative controls and the variability or standard 
deviation around them. A number between 0.5 and 1 usually means that the 
assay quality is acceptable, i.e. that the effect size compared with variability 
is big enough to give you a measurable signal. 
		 Next, you’ll use the information on variability and effect size to 
determine the sample size, like the number of animals per experimental 
group you’ll need to get meaningful results. If the variability around positive 
and negative controls is big, or the effect size small, Silberberg says, “you 
obviously need more animals.” Also, make sure that you later report the 
sample size and how you determined it in your paper. 
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		 This is a good time to consult a statistician, says Micoli, who learned 
the hard way what happens if you don’t: After completing a study of how a 
drug affects the skeleton of mice, he found out that he didn’t have enough 
mice for statistically robust conclusions. “We consulted with a biostatistician, 
who told us very clearly at least what range of the number of animals we 
needed to use,” Micoli says. “We [eventually] repeated [the study with] the 
right number of mice. If we had just added 20 more mice to our initial 
study, we would have not wasted that much time.”  
		 As long as your sample size is big enough to get meaningful results, 
consider replicating an animal experiment rather than doing a single 
experiment with all animals at once, Fang says. This will allow you to make 
sure that you didn’t just get the result because there was something unique 
about the group of animals you tested (like a certain kind of stress, or an 
infection). “It could be just a one-off thing that happened in that particular 
batch of mice,” he says. 
		 For in vitro studies, the equivalent to sample size is how often you 
need to replicate the experiment. Keep in mind that these replicates need to 
be truly independent biological replicates and not just technical replicates, 
where you split the same experiment into several groups. For example, say 
you are testing the effect of a compound on a set of three tissue culture 
dishes at the same time. If you do this at three different times, you’ve really 
only done three and not nine biological replicates. That’s because each time 
you do the three-dish experiment, you do it with the same solution and at 
the same time, which is the same as if you split the experiment into three 
groups or technical replicates. Similarly, if you give a compound to a 
pregnant mouse that gives birth to ten pups and study the effect on the 
pups, you’ve really only done one experiment and not ten because all 
newborns come from the same mother who got the drug, Silberberg says. 
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“As long as your sample size is big enough to 
get meaningful results, consider replicating 
an animal experiment rather than doing a 
single experiment with all animals at once.”

Ferric Fang
University of Washington

Also, make sure you plan to include controls each time you do an experiment, 
even if you’re just repeating it. “[One] shortcut people take is eliminating 
their controls in each experiment, after they’ve done it enough times [to 
make them] feel like they know the system is working,” says Micoli. 
“That’s something you should never do. Those should always be part of 
your experiment.”  
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MAKE A PLAN 
AND STICK TO IT

As we’ll explain in detail in the chapter on 
multiple testing, it is very important that 

 you make a plan of exactly what you’ll 
measure in the experiment and how often 

you’ll measure it and then not only stick 
to that plan but also report it (and any 

deviations from it) in your paper.
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The reason is that often researchers measure many more 
things than they later use in their results, thinking that it’s OK to only 
use the “best” readings, or they later remove what they believe to be 
“outliers,” because these disagree with what they believe the results should 
look like. 
	 That, however, carries the risk that your results will only amplify 
your confirmation bias. Another risk is that you might take a look, 
statistically speaking, at your data more often than you think you are, 
which increases the risk of false positives and spurious results (this is 
called multiple testing). Making a research plan first and sticking to that, 
in the same way clinical trial researchers have to register their trial design 
beforehand, can prevent these problems. 
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BLIND AND RANDOMIZE
In October 2006, the drug maker Astra 

Zeneca announced that a clinical trial called 
SAINT II of the antioxidant compound 

NXY-059 for the treatment of stroke had 
failed, and abandoned its efforts to seek 

FDA approval for the compound.1
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How could this happen? After all, the preclinical studies the 
trial was based on had clearly reported an effect. However, a 2008 analysis 
of preclinical animal studies of NXY-059 showed that the biggest effects were 
observed in the very preclinical studies that didn’t report randomization 
and blinding,2 suggesting that lack of blinding and randomization might 
have inflated the results. The same seems to be true for preclinical animal 
studies in pain and multiple sclerosis research, Silberberg says: The largest 
effects come from studies that aren’t randomized or blinded. 
	 Lack of blinding also seems to make cancer studies unreliable, 
says C. Glenn Begley, chief scientific officer at TetraLogic Pharmaceuticals: 
When Begley, who previously led the Amgen team that failed to reproduce 
47 of 53 preclinical cancer studies, asked some of the original authors to 
reproduce their own experiments in their own labs—with the only difference 
being that the experiments were now blinded—most were unable to do so.3;4

	 This raises the question: How can lack of blinding and randomization 
lead to chance findings that are difficult to reproduce? Aren’t animals, for 
example, already randomly mixed in their cages?
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	 Often they’re not, Silberberg says. “I’ll give you an anecdote 
someone told me in one of my talks,” he says. “They said that they 
never used to randomize the animals because the animals arrive at the 
institution and then they get transferred to cages. So they said that’s 
randomized already. But it turns out that when the people transfer them 
to cages, they typically first pick up the more docile animals because it is 
easier to catch them. So those will be in one cage, and the other cage will 
be the ones that are more active. Or you’ve got a cage which is closer to 
the door and therefore affected by draft and another cage is further in the 
room and in a quieter place. Or you’ve got one aggressive animal in the 
cage which affects all the others and puts them at stress. So there are many 
many ways where you can think that it doesn’t matter and it does.”  
	 For in vitro studies, Silberberg says, randomization is just as 
important. Imagine, he says, you’re doing a dose response curve of a drug 
effect on ion channels: If you just gradually go from low to high doses, 
you might get desensitization, something randomization would avoid.
	 So how do you randomize? With animals, that’s often quite 
easy, says Fang: Just toss a coin—or let the computer generate a random 
number—to determine which animal goes into which group. 
	 Blinding is also not very hard: Just remove the labels. When Fang 
scores samples from mice treated in different ways for pathology, “we’ll 
just send them to our pathologist with no information, and they’ll score 
them,” he says. “I think that those kinds of tricks from clinical research 
are very useful for wet labs.”  



EXPERIMENTAL QUALITY  33

	 Blinding can also help you avoid another common problem, says 
Martina Bremer, a statistician at San Jose State University. Researchers 
tend to clean up the data for example by removing outliers if they believe 
they already know what the result of an experiment should look like. 
That’s unlikely to happen if you remove the column headings and ask 
someone else to analyze the data. 
	 So make sure you blind and randomize your samples. This is less 
important in exploratory research like sequencing a genome or an initial 
screen where you don’t have controls, says Silberberg. But whenever you’re 
comparing an experimental and a control group with a specific question or 
model in mind, it’s better to do so in a randomized and blinded way. 
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“Whenever you’re comparing an experimental 
and a control group with a specific question 
or model in mind, it’s better to do so in a 
randomized and blinded way.”

Shai Silberberg 
NINDS
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TEST AND REPLICATE
A few years ago, a postdoc in Fang’s lab had a 

problem. He was getting inconsistent results in 
biochemical experiments with Nitrosoglutathione,  

a compound that releases nitric oxide (NO).
Eventually, he reasoned that something about the  

way he was doing his experiments wasn’t consistent. 
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“People unwittingly were just coming into the warm room 
flipping the lights on and off randomly, not realizing [this] was an 
important variable,” remembers Fang. His postdoc tested that by sticking 
an electrode in his solution and flipping on the light, and indeed, Fang 
remembers, “you could see this big spike of NO release. So he started 
shielding all of his reaction vessels and doing the experiments without the 
lights on and everything settled down.”  
	 This is why Fang tells people to initially try to do their 
experiments in a way that’s as consistent as possible—like setting up or 
harvesting a bacterial or cell culture at the same hour of the day. “You 
never know if there is a hidden variable that might cause a problem with 
reproducibility,” Fang says. So initially, make sure you get consistent 
results, by trying to avoid any variation in your experimental conditions.
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	 But once you’ve got your initial consistent results, you’ll need to 
do exactly the opposite: Test and replicate if these results hold up under 
variable conditions. That’s because you’ll need to make sure the result is 
robust enough to survive the variability and change in conditions that will 
undoubtedly occur if someone else in a different lab tries to repeat the result. 
This is especially important if your initial results are just barely statistically 
significant, Fang says. A robust finding, he adds, is “not only seen on March 
14th when you have a full moon, but really can be done under lots of 
circumstances in lots of different locations where you change [variables].”  
	 Introducing variation will at first be difficult, because most 
researchers are trained to minimize it so they can get significant results even 
with small effect sizes. Can’t reproduce a result with different batches of an 
enzyme? Chances are your PI will tell you to stick with the same batch. 
	 Instead, you need to realize that other lab that will try to 
reproduce your result will likely do so with a different batch. So don’t 
be afraid to introduce variability. Variable repeats of the experiment will 
ensure that your effect size is bigger than any of these kinds of sources of 
variability, King says. 
	 So what should you vary? First, there are the kinds of experimental 
conditions you know might vary, like using a different assay, a reagent from 
a different supplier, different batches of a reagent, a cell line with a different 
number of passages or cell lines grown in a different batch of serum.
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	 The serum variation is especially important, Deatherage says. A 
common practice is that labs test different serum batches for their cell line 
experiments and then buy big amounts of the one batch where they see an 
optimal phenotype or response. But that’s a problem for reproducibility, 
he says, because other labs likely won’t have access to that same batch, 
won’t be able to reproduce the initial result, and won’t know why. So in 
a way, by creating optimal but narrow conditions for your experiment 
and then not disclosing this serum batch dependence in the publication, 
you’ll make it much more difficult for others to reproduce it. “People 
[may] fine-tune the conditions so that their experiments are giving a good 
strong signal,” Deatherage says. “It could take people working from the 
published papers years to figure out how to get a similarly strong response. 
And that’s just to get started to repeat the experiments.” So repeat your 
experiment with a range of different serum batches, and then report the 
entire range of results you got with the different batches in your paper, or 
at least disclose that the experiments are sensitive to serum batch.  
	 But it gets trickier, because there are also many unknown factors 
that might affect the results: There could be differences in the water in 
different labs or subtle differences in the way people do experiments. 
What’s more, studies have shown that mice handled by men seem to 
have a lower pain response than mice handled by women,1 and that 
mice exposed to Salmonella during the day (when they rest) are more 
susceptible to infection than mice exposed at night (when they are 
active).2 Learning about the Salmonella study “was really quite frightening 
to me,” says Fang, who, after all, studies Salmonella infections himself. 

“This is not a variable that I would normally take into account.” 

“You’ll need to make sure the result is robust 
enough to survive the variability and change 
in conditions that will undoubtedly occur if 
someone else in a different lab tries to repeat 
the result.”
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	 So how could you ever anticipate variation in such unknown 
factors? The best way to simulate this kind of variation is to have someone 
else in another lab repeat the experiment. The second best way is to have 
a different person in the same lab do it. That’s how King came to realize 
that the way you dilute small molecules can sometimes cause them to 
precipitate. “It sort of controls for those variables that you might not have 
thought about when the first person was doing the experiment,” he says.  
	 Asking someone else to repeat the experiment will also force you 
to communicate all necessary details. “By having somebody else do the 
experiment who is maybe not as trained in the technique, not quite as 
expert, you realize what you really have to communicate [so they can] 
perform your experiment reproducibly,” says King. When it’s time to 
write the paper, make sure you include all these details in your materials 
and methods section.
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“Asking someone else to repeat the 
experiment will also force you to 
communicate all necessary details.”

Randall King
Harvard Medical School
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LEARN STATISTICS 
(AND CONSULT A  

STATISTICIAN)
Weak statistics knowledge is another factor that 

can make studies unreliable. “I think we could 
really improve our formal statistical training 

for young scientists,” says Fang. Silberberg puts 
it more bluntly: “Most people don’t have a clue 

how to use statistics.” Teaching statistics is 
beyond the focus of this book, but let’s discuss 

a few examples that illustrate the problem.
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One common issue seems to be a lack of understanding of 
whether data are correlated or independent from each other. Fang, editor-
in-chief of the journal Infection and Immunity, recently commissioned 
an analysis of 110 papers that had appeared in April and May 2013 in the 
journal.1 “Probably the most common major pitfall,” the authors wrote, 
was treating data as independent from one another when they weren’t: 
Measurements from the same animal taken at different times, for example, 
aren’t independent from each other. As a result, researchers used the wrong 
statistical tests: The paired t test, for example, is only appropriate for 
independent data; otherwise, the unpaired t test is a better choice. 
	 But even the t test is only appropriate in some cases: when comparing 
the means of data that are distributed “normally,” like a bell curve—the way 
height in the human population is distributed, for example. Distributions 
different from that require different tests. For example, life times are 
distributed exponentially (with many small and few large numbers), which 
means that tests like Mann-Whitney or Wilcoxon are more appropriate.
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	 One reason researchers use inappropriate tests is that they run 
their data through different tests until one gives them significant results, 
Micoli says: “As computer tools got better, I’ve known people who push 
their data through Excel and just do every possible statistical test in the 
hopes that one of them will give them a p-value less than 0.05.”  
	 Confidence intervals are also often confusing. A 2005 study found 
that fewer than 20% of researchers correctly understand that partially 
overlapping confidence intervals (or standard deviations) don’t necessarily 
mean that two results aren’t significantly different from each other.2-4 
	 And often researchers seem to assume that as long as they have 
a p value below 0.05, they have meaningful results. But effect size is just 
as important, says Glass. Take, for example, a 2012 meta-analysis of over 
22,000 people, half of whom took aspirin for five years while the other 
half didn’t.5 The aspirin-takers had a reduction in the risk of heart attacks 
that was highly statistically significant: The p value was smaller than 
0.00001. But their actual risk—the effect size in this case—was only reduced 
by 0.77%, which is likely smaller than the risk of side effects.6 “People just don’t 
appreciate what a p value means versus an important effect,” Glass says. 
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“As computer tools got better, I’ve known 
people who push their data through Excel 
and just do every possible statistical test in 
the hopes that one of them will give them  
a p-value less than 0.05.”

Keith Micoli
New York University School of Medicine



44  BURROUGHS WELLCOME FUND

BEWARE OF  
MULTIPLE TESTING  

In 2006, Canadian researchers found that 
Sagittarians are 38% more likely to break a leg 

than people of other astrological signs, after 
checking the reasons why residents of Ontario 
province had unplanned stays in the hospital.1
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But they didn’t believe their own results, because 
they designed their study with a flaw: They checked so many different 
health problems for associations with certain astrological signs that some 
of them, just by chance, would show up as statistically significant. They 
wanted to make a point: That researchers often look at their data many 
times and in many ways, and once they find one unusual result that’s 
statistically significant, they report it.  
	 This is referred to as the multiple testing problem: It’s as if you 
roll a pair of dice until you get snake eyes—and then pretend you rolled 
it once, says S. Stanley Young, former director of bioinformatics at the 
National Institute of Statistical Sciences. Assuming the usual p value for 
statistical significance of 0.05, checking 100 such associations will, on 
average, result in five significant ones, just by chance.  
	 Multiple testing can be a problem with epidemiological studies, 
where researchers compare a group of healthy people with another group 
of people with a certain disease. They often check dozens, if not hundreds 
of different life style factors for significant associations with the disease, 
and only report the ones that show a significant association but don’t 
correct for the fact that they rolled the dice that many times. This is part 
of the reason why one day, we are told that coffee increases our cancer 
risk, and the next day it doesn’t.2 
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	 Often, researchers aren’t even aware that they are checking their 
data many times, says Donald Berry, a biostatistician at MD Anderson 
Cancer Center in Houston. In an article on this problem,3 he explains it 
this way: Say you’re traveling in a foreign land, and “pass through the 
town of Oz. The inhabitants seem unusually tall. You retrace your route to 
ask the heights of the people you had seen. The 25 adults queried averaged 
4 inches taller than the mean height of their compatriots, after adjusting 
for sex and age. Accounting for sampling variability you [...] find the 
observation to be highly statistically significant (P < .001).”  
	 However, the finding is most likely a false positive, Berry 
says. That’s because you probably noticed many unusual things in the 
inhabitants of Oz in addition to height—like the color of people’s clothes, 
whether they wore glasses, had freckles etc.—without being aware that 
you were checking them for all those features. In a similar way, Berry says, 
it’s a problem if researchers do an experiment and get something that 
seems really unusual, then redo it, but only report what they believe is the 
better reading, not necessarily the first reading. “They are not taught to 
report everything,” he says. “If you are going to redo it because it looked 
unusual to you, you still have to give the first reading. They don’t do that.”  
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	 A related problem is when researchers keep adding experimental 
samples until they get a significant result, Silberberg says. They believe 
that they eventually got statistical significance because they had included 
enough samples to detect a true effect. Not so, he says: What they really 
did was increase the likelihood of getting a false positive result each time 
they analyzed the data after adding more samples. Uri Simonsohn, a 
behavioral scientist at the University of Pennsylvania, showed that—
especially with small data sets—chances are that adding more samples 
might initially render results statistically significant but then insignificant 
again, even though the sample size keeps increasing.4  
	 In the cases mentioned so far, researchers sometimes roll the 
dice without being aware of it. But in systems biology studies, analyzing 
the same data set many times is a clear feature of the study, and the 
multiple testing problem therefore much more obvious. Examples are 
microarray analyses that compare the expression of thousands of genes 
in mice treated with a drug and untreated mice; or a genome-wide 
association study that checks which among thousands of genetic markers 
are significantly more common in people with a disease than in people 
without it. 

“It’s a problem if researchers do an experiment 
and get something that seems really unusual, 
then redo it, but only report what they believe 
is the better reading, not necessarily the 
first reading.”

Donald Berry 
MD Anderson Cancer Center
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So how can you address the multiple testing problem in your research?

1.	 First, you’ll need to do what researchers conducting randomized 
clinical trials are already required to do: Keep track of how often 
you actually look at the data. To do so, you’ll need to decide on 
the experimental design and when to start and stop data 
collection before the experiment and then stick to that plan all 
the way through. You’ll eventually also need to report, in your 
paper, the experimental plan and whether and why you deviated 
from it. This also means that you can’t just “clean up” your data 
after you’re done with the experiment, for example by removing 
outliers, because that, too, would mean deviating from your 
initial research plan as to which data to collect and include. One 
web site that provides help and guidance with the preregistration 
of your experimental plan is the Open Science Framework,5 run 
by the non-profit Center for Open Science.6 

2.	 Once it’s clear how often you roll the dice, you’ll need to get together 
with a statistician to check if and how you should statistically adjust 
for that, for example by using more stringent p values.  

3.	 Another way to minimize false positive results in systems biology 
experiments that analyze a lot of data is independent replication 
of the experiment. Say you’re checking which of 10,000 genes 
significantly change their expression level in a group of mice with 
a disease compared with healthy mice. With a p value of 0.05 for 
significance, you’d likely get 500 (5%) false positives just by 
chance. Most should disappear if you repeat the experiment with 
a new set of mice. 
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LEARN TO THINK  
BAYESIAN   

Researchers are usually most familiar with 
the traditional, frequentist approach to 

statistics and one of its most commonly used 
statistical tests, which comes up with a p 

value—the probability that an experimental 
result or something more extreme could have 

occurred just by chance. Usually, results are 
considered statistically significant if this 

probability is less than 5%. 
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But many problems with reproducibility, like the 
multiple testing issue, or the fact that many negative results are never 
published, can be spotted more easily with the Bayesian approach to 
statistics. That’s because this approach doesn’t just look at the experimental 
results themselves, but also takes into account any other information—
including information before the experiment took place—that might be 
relevant to the outcome.  
	 To explain this approach, Hall gives the following example: 
Suppose you get a positive test result for some terrible rare disease you’ve 
heard about. The doctor tells you the test is very reliable: The false positive 
rate is 0.01%—the test will mistakenly diagnose only 1 of 10,000 healthy 
people as having the disease. That will likely cause you to think that you 
probably have the disease.  
	 But in Bayesian statistics, there is another factor you need to 
consider: Just how likely is it that you get the disease in the first place? 
This is what Bayesian statisticians call the prior probability that you have 
the disease. In this example, that’s the prevalence of the disease. 
	 Assume the prevalence in the US is 1/100 million: out of 100 
million people, one has the disease. Now because the test you took gets 1 
in 10,000 results wrong, and because 100 million people contain 10,000 of 
such wrong readings if all 100 million people took the test, 10,000 healthy 
people of the 100 million will get a false positive test result, in addition to 
the single person who really has the disease.  
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	 Once you know that, you’ll probably relax: Your positive test 
result only means that the chance that you have the disease is actually 
only 1:10,001. This is what Bayesians call posterior probability—the 
probability of the result you are interested in, after considering all 
available information including the prior probability.  
	 This so-called base rate fallacy shows how the Bayesian approach 
takes prior probabilities into account. To explain how this matters in 
research, Hall gives another example: A company does a randomized 
controlled trial of a cancer drug. In the traditional, frequentist approach, the 
trial is taken to support the claim that the cancer drug works if fewer drug 
takers get cancer than placebo takers—at a p value of less than 0.05. This 
means that the difference is statistically significant: There is a less than 5% 
probability that you’d have seen the same or a bigger effect just by chance. 
	 Now assume the company does 100 such trials. With a p value 
of 0.05 for statistical significance, 5 of them (5%) will show that the drug 
worked—just by chance. If the company only published the 5, everyone 
would be impressed and say, “’oh wow, a great new drug to treat cancer,’” 
Hall says.  
	 Bayesians are less likely to make that mistake, because they 
consider all available information. “A Bayesian,” Hall says, “would publish 
all of the data from all 100 studies. But if you just look at the studies 
through a frequentist lens, it’s very easy to miss this. Very basic stuff like 
making sure that so-called negative results get published, which is just an 
obvious thing to do if you are Bayesian, is still [often] not done, [whereas] 
in physics, Bayesian techniques are standard by now.”  
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	 Because the Bayesian approach involves looking at all 
observations including negative ones, it should also help avoid the 
multiple testing problem, which is, after all, the result of ignoring negative 
data. What’s more, it forces you to check previously available evidence 
before starting an experiment. This is often not done in biomedical 
research, which is why there are unnecessary clinical trials—like one 
that enrolled 7,000 stroke patients to test if the calcium channel blocker 
nimodipine was effective to treat them, even though preclinical studies 
were available before the trial started that showed no effect.1

	 It’s not always easy to do the computations in Bayesian statistics, 
and estimating prior probabilities can often be subjective. But Bayesian 
thinking helps you to be aware of many experimental design problems that 
contribute to reproducibility issues. So you may want to take a closer look.

References:

1	 http://www.bwfund.org/newsroom/newsletter-articles/special-report- 
	 biomedical-research-are-all-results-correct

Further reading: 

Tversky A & Kahneman D: Evidential impact of base rates (on the base 
rate fallacy), pages 153-160 in: Daniel Kahneman, Paul Slovic, Amos 
Tversky (editors): Judgment under uncertainty: Heuristics and biases. 
Cambridge University Press (1982)

Ian Hacking: An Introduction to Probability and Inductive Logic. 
Cambridge University Press (2001)

Donald A. Berry: Statistics: A Bayesian Perspective. Duxbury Press (1995) 

Probabilistic Programming and Bayesian Methods for Hackers.  
https://camdavidsonpilon.github.io/Probabilistic-Programming-and-
Bayesian-Methods-for-Hackers

“Bayesian thinking helps you to be aware  
of many experimental design problems 
that contribute to reproducibility issues.”
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USE STANDARDS
We already discussed multiple testing as  

a major statistical challenge of high 
throughput experiments. But there are 

many other technical issues that can make 
such experiments difficult to reproduce. 

Some of them can be addressed by  
the use of standards.
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For example, to measure the mRNA expression levels of thousands 
of genes on microarray chips, you need to isolate RNAs from cells, attach 
fluorescent dyes to them and then hybridize the labeled RNAs with thousands 
of complementary DNAs that are on a microarray chip. Often you’ll use two 
mRNAs from an experimental sample and a control, each of which you label 
with a different fluorescent dye.
	 The problem is that ozone can degrade one of the two commonly 
used dyes more than the other. As a result, microarray results on a smoggy 
day will differ from results on a not-so-smoggy day, says Ronald N. Germain 
at the National Institute of Allergy and Infectious Diseases (NIAID). Ozone 
scavengers used in many labs only partially solve the issue, he adds.
	 This is why it’s important to make a standard RNA batch and 
include it in every experiment; ideally, labs should also share their standards 
with other labs to improve comparability of results between labs. But often 
researchers still aren’t convinced this is necessary, says Germain, who has 
been developing such standards. “I have found enormous resistance from 
people,” he says. 
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	 As a result, it’s often difficult to compare microarray data from 
published studies because standards are often missing, Germain says, 
adding that NIH institutes like the NIAID are discussing ways to require 
standardizations at least whenever they fund collaborations between 
different labs. 
	 There are also efforts to develop standards with other high 
throughput technologies. In the case of RNA-seq, which is slowly 
replacing microarray analysis and involves sequencing and counting all 
mRNAs of a cell directly, an “External RNA Control Consortium” has 
developed so-called spike-in RNA standards that contain predefined 
numbers of transcripts.
	 Standards are also becoming available for flow cytometry, where 
a laser helps counting or sorting cells by analyzing certain cell surface 
markers, typically using fluorescently labeled antibodies to these markers. 
For the major cell markers, Germain says, researchers have come up with a 
standard antibody panel researchers can use in their flow cytometry assays.1 
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	 But as the case studies in the next chapter show, not all 
reproducibility problems with high throughput experiments can be solved 
by using standards. The good news is that in principle, it’s possible to 
eventually solve most problems. Doing so, however, can be difficult and 
time consuming and often requires collaboration between the different 
labs whose results can’t be reconciled.

References:

1	 Nat. Rev. Immunol. 12, 191 (2012)

“It’s often difficult to compare microarray 
data from published studies because 
standards are often missing.”

Ronald N. Germain
National Institute of Allergy and Infectious Diseases
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CASE STUDIES: WHAT 
TO DO WHEN YOU CAN’T 
REPRODUCE SOMEONE 

ELSE’S DATA
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Case Study 1: FACS

	 It was a research collaboration like many others: The labs of 
Kornelia Polyak at the Dana-Farber Cancer Institute in Boston and Mina 
Bissell at Lawrence Berkeley National Laboratory in Berkeley were using 
a variation of flow cytometry, fluorescence activated cell sorting (FACS), 
to analyze healthy breast tissue cells for two markers, CD10 and CD44 
(markers of two types of cells found in the mammary gland epithelium). 
But even though they were using the same source tissue, there was a 
consistent difference in the results from both labs: Bissell’s lab found all 
cells positive for both markers, while in Polyak’s lab at least some cells only 
expressed one.
	 What was going on? To find the culprit, they tried using the same 
FACS machine, the same antibodies, the same data processing software, 
and went through each step of the protocol to make sure both labs went 
through exactly the same steps. Still, the differences persisted. “[It] was 
more than a year and it was very frustrating,” Polyak says. “We didn’t 
understand: Why can’t we follow a protocol?”  
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	 Finally, when Polyak’s postdoc went to Bissell’s lab to perform 
the experiment side by side with Bissell’s postdoc, they found that the 
outcome had to do with the enzymatic digestion step that breaks the tissue 
into single cells.1 And it wasn’t the batch of enzyme used; it was the way 
they stirred the cells. While Polyak’s postdoc used a magnetic stir bar for 
eight hours, Bissell’s used a more gentle shaker for 12 hours. This made 
sense: The faster stirring in Polyak’s lab might have disrupted the markers 
in some of the cells, explaining why not all of the cells expressed both of 
the markers. While Bissell’s lab was doing “some very gentle shaking,” 
Polyak says, “we [had] a stir bar—and that [seemed] to be perturbing 
some of the antigens on the surface.”  
	 The case, Polyak says, taught her that sometimes even the 
most detailed protocol might not contain the very detail that makes 
the difference: “Who thinks [the] speed of stirring tissue [or] shaking 
would make a difference? But it does!” That’s why Polyak has started 
to videotape some of the procedures done in her lab. With a video in 
hand, they would have found out much earlier, she says. What’s more, 
she says, “you really have to contact people if you have a disagreement. If 
you don’t, it’s almost not possible to figure out what’s wrong or why you 
cannot reproduce [something].”  
	 So when she recently couldn’t reproduce a FACS profile of 
leukocytes published by the lab of Lisa Coussens at Oregon Health & 
Science University, she didn’t hesitate to contact the other lab. “It turned 
out we had to change our FACS machine and the filters,” Polyak says, 
adding that again, it was also crucial to not digest the tissue for too long to 
prevent disruption of the surface markers. “We could not have done that 
if we had not talked directly to the other lab. And even then, it took us  
six months.”  
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“Who thinks [the] speed of stirring tissue [or] 
shaking would make a difference? But it does!”

Kornelia Polyak 
Dana-Farber Cancer Institute
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Case Study 2: Proteomics 
	 When proteomics researchers want to find out which proteins 
interact with each other, they allow them to bind together, then 
enzymatically cut the protein clump into many pieces, electrically charge 
the pieces, smash them against a gas cloud to generate even smaller 
fragments, and measure the masses and charges of the resulting peptide 
pieces in a mass spectrometer (MS). Finally, a computer program cobbles 
together all the pieces into the original peptides. It’s as if “you were to take 
a wine glass, throw it against a wall, [and] glue the pieces together,” says 
Ruedi Aebersold, a proteomics researcher at ETH Zürich. 
	 Given the complexity of the process, it’s perhaps not surprising 
that it is sometimes poorly reproducible: When a group of researchers 
mixed equal amounts of 20 proteins and sent the mix to 27 labs, only 
seven labs got all proteins right.2 “The results were stunning,” says 
Aebersold. But when Aebersold analyzed all of the data the same way 
in a single place—in his old lab in Seattle—the discrepancies mostly 
disappeared. This, Aebersold says, shows that “by far the largest 
contribution to the variability was the data analysis software.”  
	 In another version of the procedure called affinity purification 
MS, researchers let cells express a protein with a handle on it, lyse the 
cells and then use that handle to isolate only that protein and the other 
proteins bound to it; then, they analyze which proteins are involved by 
MS. When Aebersold found that only 30% of his results overlapped with 
the results from another lab led by Giulio Superti-Furga in Vienna, the 
two labs decided to collaborate to find out why. 
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	 Again, it turned out that the data analysis was the culprit:3; 4 Among 
other things, one lab’s analysis software allowed for more false positive (and 
fewer false negative) data points than the other.
	 One lesson from the experience, Aebersold says, is that “it’s 
important that people document exactly what [statistical] filters they use, at 
what level they filter [and] with what tools they filter.” This, he adds, applies 
to all high-throughput techniques including microarrays, sequencing and 
metabolomics. “People [should] describe in their papers what tool they used 
with what parameters and make the raw data accessible.”  
	 What’s more, he says: Repeat an analysis, even if that’s expensive. 
“People say, ‘well, I can’t afford to do duplicates or triplicate analyses because 
it costs money and I don’t learn anything new.’ And that’s a notion I would 
strongly argue against. Yes, you will not learn anything new in the sense 
that you identify more genes or proteins, but you learn a lot about the 
quality of the data.”  

References:

1	 Cell Rep. 6, 779 (2014)

2	 Nat. Methods 6, 423 (2009)

3	 Nat. Methods 10, 307 (2013)

4	 Nat. Methods 10, 301 (2013)

Further information: 

NIH video module 1 “Lack of Transparency” discusses  
contacting another lab to reconcile discrepancies  
(http://www.nih.gov/science/reproducibility/training.htm)

“Repeat an analysis, even if that’s expensive...
you learn a lot about the quality of the data.”

Ruedi Aebersold 
ETH Zürich
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JUST AS IMPORTANT: 
NOTETAKING  

AND REPORTING
When you have to ask one of your former 

postdocs to get on a plane to explain how they 
did an experiment to the person continuing 

their project, you know you might have a 
problem with notetaking.
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Deatherage still remembers a case where this actually 
happened: A postdoc in a cell biology lab couldn’t reproduce the results 
of another postdoc who had left the lab. When they flew in the previous 
postdoc to check what he had done differently, they found that he had been 
using a different assay kit to measure protein levels: While the new postdoc 
was using an assay called Lowry (which is more sensitive to tryptophanes 
and tyrosines), the previous postdoc had been using a Bradford assay 
(which is more sensitive to arginine residues). However, he had stopped 
mentioning this detail in his lab notes because he ran these assays so often 
that he stopped writing down which assay he was using, Deatherage says. 
	 King had a similar experience in his lab: When two of his rotation 
students tried to dissolve a compound, it kept precipitating. What they 
didn’t realize, King says, was that they had to add a small volume of the 
compound first, before adding the medium, as opposed to doing it the 
other way around. The reason they didn’t know was that the postdoc who 
taught them the protocol had forgotten to include that detail.
	 The lesson here is clear: Even recording seemingly unimportant 
experimental details can be crucial, such as the number of passages a cell 
line went through, the exact source and clone ID of an antibody, or where 
you got a mouse strain from. Germain still remembers that when he was a 
grad student, he even used to record the batch of certain reagents like the 
fetal calf serum he used. “We can’t always anticipate all of the information 
that we, in retrospect, should have collected,” he says. “But it’s surely useful 
to [think] hard about what all the variables can be.” 



66  BURROUGHS WELLCOME FUND

	 It’s also important to record the experimental results in their 
original form instead of a sanitized version, Fang says, even the “ugly 
western blots with the big stains on them and the lanes in the wrong order.” 
But that’s sometimes easier said than done, in part because different lab 
members use a different system to record their experiments. “Standardizing 
record keeping and data management is a huge lack right now,” says Micoli. 
One possible solution: electronic notebooks.1 “You cannot erase them, they 
are always there,” Casadevall says. 
	 Recording exactly what you did is especially challenging when 
using software. Polyak says she started to record videos of the exact steps 
people in her lab go through when they process RNA-seq or ChIP-seq data.
	 There are even tracking programs that enable users to record the 
exact keystrokes and commands they used when using software, Germain 
says. This allows others to later reanalyze a deposited dataset exactly the 
same way the original authors did. 
	 One tool that’s increasingly used this way is the IPython 
notebook.2 They record every step when users enter and execute code, and 
even let them include explanatory text, plots and other media—all in a 
single document. Readers can later download a notebook and use it as a 
basis for their own data analyses. 
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	 Another tool is GenePattern. Developed by the Broad Institute 
as a “platform for reproducible bioinformatics,” it allows users to capture 
and later share all of the steps they take when analyzing genomic data.3 
It remembers all parameters and software versions used for an analysis, 
which later enables others to reproduce it. Recently, it’s even become 
possible to run GenePattern from Python.4 
	 Once you’ve captured all of the experimental details, you’ll still 
need to report them in your papers. Often researchers don’t do so, Bremer 
says. For example, for RNA-seq, there are many different normalization 
procedures to correct biases in the data towards certain types of 
sequences, but “often people do not even say how they normalized,” 
she says. “They say ‘we normalized the data somehow.’ 
Sometimes they don’t even mention 
which [software] program they analyzed 
the data with. That’s a big problem.” 

“Standardizing record keeping and data 
management is a huge lack right now.”

Keith Micoli
New York University School of Medicine
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	 So make sure you include enough information to enable others 
to reproduce the experiments in your paper. Here is a recap of the things 
mentioned before that you should report in the papers you publish:

•	 whether you checked cell lines for mycoplasma contamination; 

•	 where you got your cell line(s) from, whether you authenticated 
them, and how many passages the cell lines you used went 
through;

•	 the sample size or number of independent replicates in your 
experiments and how you determined it;

•	 the experimental plan and design you made before starting your 
experiments and whether and why you deviated from it, including 
the results of all planned measurements, even the ones with a 
negative outcome. If you use cell lines, this includes, for example, 
the entire range of results you got with different serum batches 
used to grow the cell lines in;

•	 whether and how you did blinding and randomization, and if you 
didn’t, state the reason why not.
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	 Whenever you’re wondering whether maximizing the 
reproducibility of your results is a waste of time that might keep you from 
publishing your results as quickly as possible, remember why you got into 
science in the first place, says Fang: “I understand that people have career 
anxieties and they are greater today than ever,” he says. “But the reason 
that you get into science in the first place is you feel that it’s a way to serve 
society. The goal isn’t to get the most papers in Science, Cell and Nature 
or to win prizes. It’s to produce something that really advances society’s 
understanding of something. And that is something that any scientist can 
really look back and be proud of—that they added something to this edifice 
of scientific understanding that someday is going to be useful to other 
people. That’s the satisfaction that comes from science and that can only 
come from doing your work really carefully.” 
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“The goal isn’t to get the most papers in 
Science, Cell and Nature or to win prizes. It’s 
to produce something that really advances 
society’s understanding of something.”

Ferric Fang
University of Washington
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Burroughs Wellcome Fund 
Career Development Guide Series

Advancing Careers: Articles from the Focus Newsletter
Advancing Careers is a collection of articles that were published in the 
Burroughs Wellcome Fund’s FOCUS newsletter. Topics include:

	 - Considerations in Accepting a Faculty Position
	 - Managing Your Laboratory
	 - Communicating and Funding Your Science 
	 - Balancing Work with the Rest of Your Life 

Communicating Science: Giving Talks
Practical tips on presenting your work in a variety of circumstances— 
from the formal to the informal. 

Intellectual Property: An Overview
Provides an overview on patents and copyrights, the biggest players in a
broad classification of intellectual property and the lynchpins behind
innovation and commercialization of biological inventions.



EXPERIMENTAL QUALITY  71

Moving On: Managing Career Transitions 
Moving on is never easy and neither is recognizing it’s time to do so.
This guide is meant to help scientists gain some control over a process
that can seem subjective and prone to idiosyncracies. 

Staffing the Lab: Perspectives from Both Sides of the Bench 
Are you looking to hire the perfect postdoc? Are you looking to be hired? 
This guide takes a look from both perspectives on creating a productive 
work environment.

Thriving in an Era of Team Science
How can you build a career in science when much of your work occurs in
the context of team efforts? This book provides tips and advice on how to
survive and thrive in collaborative science.

Working with Institutional Review Boards
This guide provides a general introduction and insight from experts  
on what an Institutional Review Board does and understanding its  
importance.

Email news@bwfund.org to order your free copies.
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